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Abstract

One reason learning the geometry of latent neural manifolds from neural activity data is
difficult is that the ground truth is generally not known, which can make manifold learning
methods hard to evaluate. Probabilistic population codes (PPCs), a class of biologically
plausible and self-consistent models of neural populations that encode parametric proba-
bility distributions, may offer a theoretical setting where it is possible to rigorously study
manifold learning. It is natural to define the neural manifold of a PPC as the statisti-
cal manifold of the encoded distribution, and we derive a mathematical result that the
information geometry of the statistical manifold is directly related to measurable covari-
ance matrices. This suggests a simple but rigorously justified decoding strategy based on
principal component analysis, which we illustrate using an analytically tractable PPC.

Keywords: Probabilistic population codes, information geometry, manifold learning

1. Introduction

A common goal in systems neuroscience is to understand the information encoded in the
heterogeneous responses of large populations of neurons. A key observation is that the
dimensionality of neural responses—determined by the size and stochasticity of a given
population encoding a variable of interest—is much larger than a population’s effective
dimensionality, or the number of dimensions needed to describe a majority of response
variation (Gao and Ganguli, 2015; Nieh et al., 2021; Chaudhuri et al., 2019; Gardner et al.,
2022). This lower-dimensional effective space is commonly called a (latent) neural manifold,
owing to the fact that the bases of the effective space may not be Euclidean.

The geometry of a neural manifold offers a lens into the computations performed by the
corresponding population of neurons (Chung and Abbott, 2021). Learning this geometry
from neural activity alone is a generally difficult and ill-defined inverse problem, and as
such, requires the use of strong assumptions. For example, it is often assumed that task-
relevant stimulus variables can be linearly decoded from population activity (Ma et al.,
2006). Although a variety of manifold learning methods have been empirically successful
at extracting useful geometric insight (Low et al., 2018; Tenenbaum et al., 2000; Gardner
et al., 2022), it is generally challenging to establish a principled mathematical connection
between the information encoded in a neural population’s activity and its associated latent
geometry. In this work, we demonstrate such a connection in the well-studied theoretical
setting of probabilistic population codes.
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Probabilistic population codes (PPCs) are a proposed coding mechanism whereby pop-
ulations of neurons encode the parameters of probability distributions (Ma et al., 2006).
PPCs model spike generation in a biologically plausible way (Figure 1a), are mathematically
self-consistent, and are flexible, allowing a variety of tuning curves and neural correlation
structures. These properties have made them attractive for modeling real-world neural
recordings (Beck et al., 2008; Hou et al., 2019). For understanding neural geometry, a par-
ticular benefit of studying PPCs is that there is an intuitive candidate for the latent neural
manifold: the statistical manifold of the represented distribution (Figure 1b).

The statistical manifold hails from the field of information geometry, which has found
increasing application in the fields of machine learning (Martens, 2014; Zhang et al., 2019;
Karakida and Osawa, 2020; Oizumi et al., 2016) and computational neuroscience (Kreutzer
et al., 2022). A statistical manifold is a manifold whose points are parameterizations of a
particular probability distribution (Amari, 1998, 2002, 2016); for example, one point on a
normal distribution’s statistical manifold corresponds to a particular mean and standard
deviation. Any parametric distribution has a corresponding statistical manifold whose
coordinates are distribution parameters, and whose metric is the Fisher information matrix
of that distribution. In this paper, we confirm analytically that the statistical manifold is
indeed an appropriate assignment for the latent neural manifold of a PPC, and that the
manifold dimensionality, as well as its metric, can in principle be learned by measuring
tuning curves and computing covariance matrices from neural data (Figure 1c).
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Figure 1: PPCs and the proposed geometry recovery strategy. a. The neural activity of
PPCs encodes a parametric probability distribution p(s|r), which is assumed
to be similar to the true distribution p(s|η) of some observed stimulus s. The
stimulus and r relate through the generative model η → s → r. b. In linear
PPCs, distribution parameters η̂ can be linearly decoded from neural activity
r, and the space of decoded parameters can be viewed as a statistical manifold
whose metric comes from the distribution’s Fisher information matrix. c. In this
work, we propose a principal-component-analysis-like strategy for estimating the
metric by measuring neural activity covariance matrices.
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2. Probabilistic population codes

Probabilistic population codes (PPCs) represent parametric distributions from a broad class
of probability distributions known as the exponential family. A general (canonical form)
exponential family likelihood has the form

p(s|η) = h exp
{
ηTT (s)−A(η)

}
(1)

where s ∈ RS is the stimulus vector, η ∈ Rk is the vector of natural parameters, T (s) ∈ Rk

is the vector of sufficient statistics, A(η) is the log-partition function, and h is the base
measure. For simplicity, we will assume that the base measure is constant, although this
assumption can be relaxed. (For an example, see Appendix A.)

Linear PPCs are assumed to represent an exponential family stimulus likelihood in the
sense that they model the probability of the stimulus taking a certain value, given neural
activity r ∈ RN in a population of N ≫ k neurons, as (Ma et al., 2006)

p(s|r) = h exp
{
(Wr)TT (s)−A(Wr)

}
(2)

where W ∈ Rk×N is the natural parameter readout matrix. The ‘linear’ designation refers
to the fact that the natural parameters, which determine the specific distribution being
represented, can be linearly read out via η̂ := Wr. (For an example, see Appendix B.)

In order for p(s|r) to take a particular form, there must be fairly strong constraints on
neural responses to stimuli, i.e. p(r|s). Two such necessary (but not sufficient) constraints,
which can be derived in various ways (see Appendix C), are

0 = JT
T (s) W f(s) (3)

JT
f (s) = JT

T (s) W Σ(s)

where f(s) := ⟨r⟩p(r|s) ∈ RN are the tuning curves, Σ(s) := Cov(r, r)p(r|s) is the N × N
fixed-stimulus covariance matrix, JT (s) is the k × S Jacobian of T (s), and Jf (s) is the
N × S Jacobian of f(s). For example, for a population of independent Poisson neurons,
the first condition says that the tuning curves sum to a stimulus-independent value.

Although the form of the encoded distribution places strong constraints on neural activ-
ity, it is not clear from prior work which neural activity measurements make it possible, at
least in principle, to determine the distribution a population is representing. For example,
is it sufficient to measure tuning curves and covariance matrices, as is commonly done?

3. The information geometry of probabilistic population codes

Parametric probability distributions, like those in the exponential family, can be associated
with Riemannian manifolds called statistical manifolds. The metric on such manifolds is
the Fisher information matrix I(η), whose components are

[I(η)]i,j := −E
[

∂2

∂ηi∂ηj
log p(s|η)

]

p(s|η)
=
∂2A(η)

∂ηi∂ηj
(4)

for exponential families. In other words, I(η) = HA(η), the k × k Hessian of the log-
partition function A.

3
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Is the information geometry of the distribution represented by a PPC related to a more
basic geometry we could associate with neural activity? Intuitively, since r represents a
probability distribution over the stimulus s, two neural activity vectors should be considered
somewhat different if the represented distribution is somewhat different.

This motivates defining a geometry whose metric, as in the case of statistical manifolds,
locally captures the discrepancy between represented probability distributions. That is, we
would like a metric that is locally equal to the Kullback-Leibler (KL) divergence between
p(s|r) and p(s|r −∆r), for ∆r sufficiently small compared to typical values of r:

d(r, r −∆r) := DKL( p(s|r) ∥ p(s|r −∆r) ) = ⟨ log p(s|r)− log p(s|r −∆r) ⟩p(s|r) . (5)

If ∆r is small,

log p(s|r−∆r) ≈ log p(s|r)− (∆r)TW T [ T (s)−∇ηA(η) ]−
1

2
(∆r)TW THA(η)W (∆r) ,

so

DKL = (∆r)TW T [ ⟨T (s)⟩ − ∇ηA(η) ] +
1

2
(∆r)TW THA(η)W (∆r) (6)

=
1

2
(∆r)TW THA(η)W (∆r)

=
1

2
(∆η̂)THA(η)(∆η̂)

where we have used the fact that ⟨T (s)⟩p(s|η) = ∇ηA(η). From the above, we can see that
the natural metric on neural activity exactly corresponds to a projected version of the nat-
ural metric on the corresponding statistical manifold. This makes it natural to define the
neural manifold of a PPC as the corresponding statistical manifold. But while this assign-
ment is theoretically interesting, does this geometry correspond to anything measurable?
In what follows, we pursue the question of learning W and HA(η) from neural data.

4. Neural correlations reflect information geometry

Fluctuations in neural activity occur for two different reasons: firstly, because neural activity
varies even when the stimulus is held fixed; and secondly, because the external stimulus
varies. The first kind of fluctuations are called noise correlations, while the second are
called signal correlations. Mathematically, the law of total covariance allows us to write the
total covariance matrix as a sum of the two types of variation1:

Cov(r, r)p(r|η) = Σnoise(η) +Σsignal(η) (7)

:= ⟨ Σ(s) ⟩p(s|η) +Cov( f(s),f(s) )p(s|η) .

Naively, we might expect that noise correlations are not particularly informative about
latent dynamics on the neural manifold (i.e. natural parameter changes), since the corre-
sponding fluctuations happen even if the distribution represented by neural activity remains

1. One should be careful to note that, unlike how e.g. signal covariance is usually defined, here our matrices
are conditional on η.
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the same. Conversely, signal correlations should be informative about latent dynamics, since
changes in the stimulus should yield changes in the represented distribution, and hence neu-
ral activity changes.

However, these two types of variation are not completely independent. Because neurons
that tend to vary together when the stimulus is fixed also tend to have their mean activities
change in a correlated way when the stimulus changes, signal correlations are to some
extent ‘contaminated’ by noise correlations. If this contamination can be ‘undone’, the
signal correlation matrix might be expected to reflect the information geometry of the
latent statistical manifold.

In the case of linear PPCs, this intuition can be made precise. We will show that

Σ−T
noise(η) Σsignal(η) Σ

−1
noise(η) ≈ W THA(η)W = W TI(η)W . (8)

The left-hand side is the signal covariance matrix ‘adjusted’ for the effect of noise corre-
lations, while the right-hand side is the natural metric on the latent statistical manifold
projected into the space of neural activity (Equation (6)). This equation represents our link
between information geometry and measurable quantities.

To show this, we will need to compute the noise and signal correlation matrices for an
arbitrary linear PPC. A useful fact is that, for an arbitrary vector v ∈ Rk×1,

⟨evTT (s)⟩p(s|η) =
∫
h exp

{
(η + v)TT (s)−A(η)

}
ds = exp {A(η + v)−A(η)} . (9)

The formal computation of the covariance matrices will be tractable if it can be reduced to
computing integrals of the above form. Fortunately, using a somewhat technical generating-
function-based argument, we can derive results that facilitate this strategy (see Appendix C).
The tuning curves and fixed-stimulus covariance matrix can be written as infinite series

f(s) := ⟨r⟩p(r|s) =
∑

n∈NN

n cn en
TW TT (s) (10)

Σ(s) := Cov(r, r)p(r|s) =
∑

n∈NN

n nT cn en
TW TT (s)

for some coefficients cn. Using Equations (9) and (10), we can for example compute that

⟨f(s)⟩p(s|η) =
∑

n∈NN

n cn ⟨enTW TT (s)⟩p(s|η) (11)

=
∑

n∈NN

n cn eA(η+Wn)−A(η) .

Similarly, we can compute that the noise covariance matrix is

Σnoise(η) =
∑

n∈NN

n nT cn ⟨enTW TT (s)⟩p(s|η) (12)

=
∑

n∈NN

n nT cn eA(η+Wn)−A(η)

5
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and the signal covariance matrix is

Σsignal(η) =
∑

n,m

nmT cncm

{
⟨e(n+m)TW TT (s)⟩ − ⟨enTW TT (s)⟩⟨emTW TT (s)⟩

}
(13)

=
∑

n,m

nmT cncm

{
eA(η+W (n+m))−A(η) − eA(η+Wn)−A(η)+A(η+Wm)−A(η)

}
.

At this point, we must make an approximation. We will assume that the components of the
readout matrix W are small; intuitively, this means that each of the many neurons in the
population typically contributes somewhat to the parameter estimate η̂ = Wr. Assuming
that W is small allows us to Taylor expand the log-partition function as e.g.

A(η +Wn)−A(η) ≈ (∇ηA)
TWn+

1

2
(Wn)THA(η)(Wn) . (14)

This means the bracketed expression in Σsignal is approximately

e(∇A)TW (n+m)
{
e

1
2

[W (n+m)]THA[W (n+m)] − e
1
2

(Wn)THA(Wn)+ 1
2

(Wm)THA(Wm)
}

≈ 1

2

{
[W (n+m)]T HA [W (n+m)]− (Wn)THA(Wn)− (Wm)THA(Wm)

}

= (Wn)THA(Wm)

to second order in W . Then Σsignal can be written as

Σsignal(η) ≈
∑

n,m

cncm n(Wn)THA(η)(Wm)mT (15)

=
∑

n,m

cncm nnT
(
W THA(η)W

)
mmT

=

(∑

n

cn nnT

)
(
W THA(η)W

)
(∑

m

cm mmT

)
.

Assuming W is small also means

Σnoise(η) ≈
∑

n∈NN

n nT cn . (16)

To second order in W , we then have that

Σsignal(η) ≈ Σnoise(η)
T W THA(η)W Σnoise(η) . (17)

The N × N noise correlation matrix is by definition symmetric and positive-semidefinite.
But in practice it is positive-definite, and hence invertible, so we can invert Σnoise(η) to
obtain Equation (8), the desired result.

6
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5. Learning neural manifold geometry from neural activity samples

Equation (8) provides a method for learning neural manifold geometry—and hence the
represented distribution—using only neural activity samples. We need only assume that
the distribution represented by a population of neurons is similar to the ground truth
distribution (although not necessarily in form or parameterization).

This method requires two things. First, we must measure the noise and signal covariance
matrices, which together allow us to measure the natural metric on neural activity space via
Equation (8). Then, to separately identify W and HA(η), we must exploit a degeneracy
in the definition of exponential family distributions.

5.1. The readout matrix is only defined up to an invertible matrix

The degeneracy is that, since p(s|η) only depends on the dot product of η and T (s), neither
is uniquely defined. In particular, if R is any k× k invertible linear transformation, and we
define η̃ := Rη and T̃ (s) := R−TT (s), then

η̃T T̃ (s) = ηTRTR−TT (s) = ηTT (s) , (18)

so the probability distribution (Equation (1)) remains unchanged. The geometry of the
statistical manifold is also invariant to such transformations, since

(∆η̃)THA(η̃)(∆η̃) = (∆η)TRTR−THA(η)R
−1R(∆η) = (∆η)THA(η)(∆η) . (19)

For PPCs, this means that W is only identifiable up to an invertible linear transformation.

5.2. The readout matrix can be obtained via principal component analysis

This degeneracy in the definition of W can be exploited in the following way. Suppose
we have measured an expression of the form W TMW , where M is some real symmetric
positive-definite k × k matrix. This product has a compact singular value decomposition
UTDV , where D is diagonal and U and V are k × N semi-orthogonal matrices (i.e.
V V T = Ik). It can be shown that W can always be chosen to be V (see Appendix D).

Which k × k matrix M should we choose? One appealing choice is the Hessian HA(η)
averaged over different values of the latent parameter η. This is similar to doing princi-
pal component analysis (PCA) on neural data, since it means considering the truncated
eigendecomposition of the average (noise-correlation-adjusted) signal covariance matrix:

⟨ Σ−T
noise(η) Σsignal(η) Σ

−1
noise(η) ⟩p(η) = W T ⟨HA(η)⟩p(η)W = UTDV . (20)

Such a choice means picking the coordinate system of the latent space so that the statistical
manifold is Euclidean on average. This can always be done, since it is always possible to do
the corresponding eigendecomposition, but is not crucial for our proposed method to work.

5.3. Covariance measurements and the readout matrix determine the metric

Since W is assumed to be semi-orthogonal, i.e. WW T = Ik, it is now trivial to read out
the neural manifold metric from the measured covariance matrices, since

W Σ−T
noise(η) Σsignal(η) Σ

−1
noise(η) W

T = WW THA(η)WW T = HA(η) . (21)

7



Vastola Cohen Drugowitsch

Algorithm 1 summarizes the above steps for learning W and HA(η). As an additional
technical detail, since Σnoise will not contribute any η-dependence to the signal covariance
matrix assuming W is small, to measure it we might as well average over all values of η to
use as much data as possible:

Σnoise ≈ ⟨ Σnoise(η) ⟩p(η) = ⟨ Σ(s) ⟩p(s) = ⟨ ( r − f(s) ) ( r − f(s) )T ⟩p(r,s) . (22)

Algorithm 1: Learning PPC neural manifold metric

Given a large collection of {ηi, si, ri}:

1. Measure tuning curves f(s) := ⟨r⟩p(r|s).

2. Compute Σnoise ≈ ⟨ ( r − f(s) ) ( r − f(s) )T ⟩p(r,s).

3. Compute Σ−1
noise (where a regularized pseudoinverse is used if necessary).

4. Compute Σsignal(η) := Cov( f(s),f(s) )p(s|η) and ⟨Σsignal(η)⟩p(η).

5. Diagonalize Σ−T
noise⟨Σsignal(η)⟩p(η)Σ−1

noise to obtain a decomposition QTDQ where Q
is orthogonal and D is diagonal. Using a standard elbow-like method, choose to retain
the top k components, and obtain a reduced weight matrix O of size k ×N . Define
W := O.

6. For each η, learn the metric by computing HA(η) = WΣ−T
noise Σsignal(η) Σ

−1
noiseW

T .

6. Experiments

In this section, we illustrate the metric-learning algorithm using a specific PPC: the minimal
correlation model, which is motivated and analytically studied in Appendix E. It has a
more complicated neural correlation structure than a population of independent Poisson
neurons, but remains analytically tractable, so one can get exact expressions for e.g. the
noise correlation matrix, and verify that PPC constraints (e.g. Equation (3)) are satisfied.

We assume that a population of N = 200 neurons has statistics described by the minimal
correlation model, and encodes a normal distribution with some mean µ and variance σ2

(Figure 2a). One important parameter of the minimal correlation model is d, which describes
how off-diagonal the structure of the noise correlation matrix is (see Appendix E for more
intuition). Define the excess noise correlation matrix

Σ̃noise(η) := Σnoise(η)− diag
(
⟨f(s)⟩p(s|η)

)
, (23)

which describes all noise correlation structure not present in a population of independent
Poisson neurons of the same size. Analytic expressions from Appendix E can be used
to visualize this matrix, along with the signal correlation matrix and two other relevant
matrices, to show that Equation (8) is approximately valid (Figure 2b) in a parameter
regime for which the components of W are small.
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Figure 2: Verifying Equation (8) for the minimal correlation model. a. A population of
correlated neurons with bump-like tuning curves encodes a normal distribution.
b. Equation (8) approximately holds for various values of µ and d.

Although the best case scenario for metric recovery is depicted in Figure 3, we found
that our algorithm gave inconsistent results. Determining the number of sufficient statistics
was robust to e.g. correlation structure, but the ability to obtain a quantitatively correct
metric (even up to an invertible transformation) was highly sensitive to model parameters.

We speculate that there are a few reasons for this. First, for the particular model being
considered, there is a narrow parameter range where both (i) the components of W are
small, and (ii) the PPC constraints are satisfied. For example, increasing the tuning curve
width makes W smaller, but thwarts the first condition in Equation (3). Second, because
moving from the N × N covariance matrix product to the k × k metric is a highly lossy
operation, small errors can greatly affect the result. Although our proposed metric recovery
approach is promising, improving its practical performance is the subject of ongoing work.
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Figure 3: Example metric recovery. Left: variance explained by retaining k = 2 components
of the adjusted signal covariance matrix. Middle: the recovered metric as a
function of true µ and log10 σ (clockwise: H11, H12, H22). Right: true metric.
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7. Discussion

We identified a natural candidate for the neural manifold of a PPC—the statistical manifold
of the represented probability distribution—and showed that it is, at least in principle, pos-
sible to recover its geometry from neural data by measuring tuning curves and covariance
matrices. Interestingly, one step of the proposed recovery method is fairly similar to prin-
cipal component analysis, except that it involves the eigendecomposition of the ‘denoised’
signal covariance matrix rather than the signal covariance matrix itself. This denoising is
unnecessary when noise correlations are negligible (i.e. when spiking statistics are well-
described by independent Poisson neurons), but could be important for learning latent
geometry when there is a nontrivial noise correlation structure.

There remain many open questions, some of which suggest clear directions for future
work. Most importantly: can the typical performance of our proposed recovery approach
be substantially improved, so that the answer to this paper’s title is a clear ‘yes’ instead of a
‘maybe’? Robustness and stability might be improved by augmenting this approach with a
more typical one, e.g. maximum likelihood recovery of the represented distribution (Walker
et al., 2020). It also remains to be seen whether a method like this could be successfully
applied to real neural data, which features a variety of additional complications.

An orthogonal direction for future study is improving and generalizing the theoretical re-
sult we obtained, which relates information geometry to a specific kind of neural population
code (PPCs) in a specific parameter regime (small readout weights). It may be possible to
derive analogous results for population codes which represent parametric probability distri-
butions in other ways, including distributed distributional codes (Zemel et al., 1998; Vértes
and Sahani, 2018), quantile codes, and expectile codes (Dabney et al., 2020; Lowet et al.,
2020). It may also be possible to say something interesting about the case where the PPC
readout weights are not small, and the geometry of the latent neural manifold is no longer
as closely related to the denoised signal covariance matrix (Equation (13)). On the other
hand, it may no longer even make sense to identify the latent neural manifold with the
statistical manifold in such a regime; we leave such questions, which are both philosophical
and technical in nature, for future work.
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Appendix A. Exponential family example: normal distribution

In this appendix, we present a familiar distribution—the normal distribution—in terms of
exponential family concepts. The likelihood associated with a normally distributed random
variable s ∈ R can be written in exponential family form as

p(s|η) = 1√
2πσ2

exp

{
−(s− µ)2

2σ2

}
= h exp

{
ηTT (s)−A(η)

}
(24)

where

T (s) := (s, s2)T (25)

η := (η1, η2)
T =

(
µ

σ2
,− 1

2σ2

)T

A(η) :=
µ2

2σ2
+ log σ = − η21

4η2
− 1

2
log(−2η2)

h =
1√
2π

.

This is the ‘canonical’ choice of T (s), η(s), and so on, but there is an entire equivalence
class of choices that yield the same expression for p(s|η). For example, multiplying T (s)
by 2 and dividing η by 2 would yield the same distribution.

The Hessian of the log-partition function (i.e. the Fisher information) with respect to
the natural parameters is

I(η) = HA(η) =

(− 1
2η2

η1
2η22

η1
2η22

1
2η22

(
1− η21

η2

)
)

=

(
σ2 2µσ2

2µσ2 2σ4
(
1 + 2µ2

σ2

)
)
. (26)

Appendix B. PPC example: representing a normal distribution

In this appendix, we present one of the simplest nontrivial PPCs, which is a population of
independent Poisson neurons that encodes a normal distribution with mean µ and variance
σ2. Consider N independent Poisson neurons with tuning curves

⟨ri⟩p(r|s) = fi(s) =
g√

2πa2/(∆x)
exp

{
−(s− xi)

2

2a2
∆x

}
(27)

where xi := xmin + (xmax − xmin)(i/N) is the center of the i-th neuron’s tuning curve,
a/

√
∆x is the width of each tuning curve, and g > 0 is a gain parameter. The number ∆x

is chosen so that

1Tf(s)∆x =
N∑

i=1

fi(s)∆x = g (28)

i.e. ∆x = (xmax − xmin)/N . (For this to work, N must be sufficiently large, and xmin

and xmax must be chosen so that xmin is somewhat smaller than the smallest value of s,
and xmax is somewhat larger than the largest value of s.) This makes g/∆x the expected

14
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total number of spikes in the population. Independent Poisson neurons encode a normal
distribution, since

p(s|r) ∝s

∏

i

p(ri|s) ∝s exp

{(
xTr

a2
∆x

)
s+

(
−1Tr

2a2
∆x

)
s2
}
. (29)

The mean and variance of this distribution are

µ =
xTr

1Tr
(30)

σ2 =
a2

1Tr ∆x
.

The corresponding natural parameters are

η1 =
xTr

a2
∆x (31)

η2 = −1Tr

2a2
∆x .

Since the parameter estimates satisfy η̂ = Wr, the rows of the readout matrix W are

w1 =
1

a2
x ∆x (32)

w2 = − 1

2a2
1 ∆x .

Appendix C. Deriving formal mean and covariance expressions

The linear PPC condition on p(s|r) (Equation (2)) is equivalent, at least for sufficiently
well-behaved exponential families where s is continuous, to

∇sp(s|r) = JT
T (s) Wr p(s|r) (33)

where JT (s) is the k × S Jacobian of T (s). For a uniform stimulus prior p(s), Bayes’ rule
indicates that the above is equivalent to

∇sp(r|s) = JT
T (s) Wr p(r|s) . (34)

The above equation can be viewed as a constraint on the types of neural activity compatible
with the desired p(s|r). It implies necessary (but not sufficient) constraints on tuning curves
and covariance matrices, among other things (e.g. Equation (3)).

It is helpful to rewrite Equation (34) in terms of the corresponding (factorial-cumulant)
generating function, which is a general-purpose tool for studying a wide variety of biophysically-
relevant stochastic processes (see e.g. Singh and Bokes (2012); Gorin et al. (2021)). Define
the probability-generating function

ψ(u, s) :=
∑

r

(u+ 1)rp(r|s) =
∑

r1,...,rN

(u1 + 1)r1 · · · (uN + 1)rNp(r|s) (35)

15
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This always exists for u+1 chosen to be on the complex unit sphere (the subset of CN with
norm 1). Define the factorial-cumulant generating function via ϕ(u, s) := logψ(u, s). This
object is useful to define since derivatives (with respect to u) of ϕ correspond to special
moments of p(r|s). In particular,

fi(s) := ⟨ri⟩p(r|s) =
∂ϕ

∂ui

∣∣∣∣
u=0

(36)

Σij(s) := Cov(ri, rj)p(r|s) − δij⟨ri⟩p(r|s) =
∂2ϕ

∂ui∂uj

∣∣∣∣
u=0

. (37)

Rewriting Equation (34) in terms of ϕ yields

∇sϕ(u, s) = JT
T (s) W [ (u+ 1)⊙∇uϕ(u, s) ] (38)

where ⊙ denotes the element-wise/Hadamard product. It is important to note that ϕ only
depends on certain combinations of s and u. In particular, define the variables

νj := (uj + 1) exp

{∑

i

WijTi(s)

}
(39)

for all j = 1, ..., N . If ϕ only depends on u and s through the νj , then Equation (38) is
solved, since

∇sϕ =
∑

j

∂ϕ

∂νj
∇sνj = JT

T (s) W [ (u+ 1)⊙∇uϕ ] . (40)

Conversely, if ϕ satisfies Equation (38), then it can be written as a function of the νj only,
since

dϕ =
∑

i

∂ϕ

∂si
dsi +

∑

j

∂ϕ

∂uj
duj (41)

=
∑

i


∑

m,j

JT
imWmj(uj + 1)

∂ϕ

∂uj


 dsi +

∑

j

∂ϕ

∂uj
duj

=
∑

j






∑

i,m

JT
imWmjdsi


 (uj + 1) + duj





∂ϕ

∂uj

=
∑

j

exp

{∑

m

WmjTm(s)

}
∂ϕ

∂uj
dνj

=
∑

j

∂ϕ

∂νj
dνj .

Hence, the general solution of Equation (38) is given by some function ϕ = ϕ(ν1, ..., νN ).
Because ϕ is analytic in u near u = 0 for all s, it is also analytic in ν in a neighborhood of
u = 0, and can be formally written as the Taylor expansion

ϕ(ν) =
∑

n∈NN

cn νn =
∑

n∈NN

cn νn1
1 · · · νnN

N (42)
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for some coefficients cn. In terms of u and s, we have

ϕ(u, s) =
∑

n∈NN

cn en
TW TT (s) [(u+ 1)n − 1] (43)

where the minus one is included to account for the constraint that (due to probabilities
summing to one) ϕ(u = 0, s) = 0. By taking the appropriate derivatives with respect to u
(see Equation (36)), we obtain the moment results used in the main text (Equation (10)).

Appendix D. The readout matrix can be chosen to be semi-orthogonal

The k × N readout matrix W is only defined up to an invertible k × k matrix R. In
this appendix, we will show that if W is one possible readout matrix, then there exists an
invertible linear transformation R such that O := RW is semi-orthogonal, i.e. OOT = Ik.

First, note that W must have rank k; otherwise, the space of natural parameters η̂ :=
Wr would have dimension less than k, in which case the represented distribution would
have less than k sufficient statistics.

Let M be any k × k positive-definite matrix, which necessarily has rank k. Since the
rank of both W and M are k, the product W TMW has rank k. This means that the
product has a compact singular value decomposition

W TMW = UTDV (44)

where D is a k× k diagonal matrix with only nonzero values on its diagonal, and U and V
are both k × N semi-orthogonal matrices. By exploiting the semi-orthogonality of U and
the invertibility of D, the above expression can be rewritten as

(
D−1UW TM

)
W = V . (45)

Our claim is true if the k× k matrix in parentheses is invertible. But the matrix product is
indeed invertible, since each factor is a full-rank matrix, so that the overall matrix has rank
k. Hence, there always exists an invertible k × k matrix that makes W semi-orthogonal.
Moreover, W can specifically be chosen to be one of the semi-orthogonal matrices that
appears in the compact singular value decomposition of W TMW .

Appendix E. A novel PPC with a nontrivial neural correlation structure

In this appendix, we describe a novel PPC—the minimal correlation model—that we use
to illustrate our metric recovery strategy. What makes this model useful from the point
of view of studying manifold recovery is that it is (i) analytically tractable, and (ii) has a
nontrivial neural correlation structure.

The idea is the following. The case of independent Poisson neurons (as in e.g. Ap-
pendix B) is well-known and analytically tractable, but too trivial to be realistic. Can we
come up with a minimal extension of it which exhibits a nontrivial correlation structure,
but remains tractable?

One fact about the independent Poisson model is that its factorial-cumulant generating
function (as defined in Appendix C) is

ϕind(u, s) = f(s)Tu . (46)
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Importantly, it is linear in u. This means that all higher order factorial-cumulants (e.g. the
variance of r1 minus the mean of r1) are zero. A reasonable extension of the above model
is to one with a general second-order term:

ϕ(u, s) = f(s)Tu+
1

2
uT ( Σ(s)− diag(f(s)) )u = f(s)Tu+

1

2
uT Σ̃(s)u (47)

where

Σ̃(s) := Σ(s)− diag(f(s)) (48)

could be called the excess covariance matrix. It can be shown (see Equation (36)), by taking
two derivatives with respect to u, that the covariance matrix of the above model is Σ(s).
Hence, since this model (before enforcing PPC-related constraints) permits an arbitrary
mean and covariance structure, it is a sort of discrete analogue of the multivariate normal
distribution.

Suppose we would like a neural population whose statistics are described by Equa-
tion (48) to represent a normal distribution with natural parameters

η1 =
xTr

a2
∆x (49)

η2 = −1Tr

2a2
∆x .

We will choose the desired readout matrix W =

(
wT

1

wT
2

)
and vector of sufficient statistics

T (s) to be (as in Appendix B)

w1 =
1

a2
x ∆x (50)

w2 = − 1

2a2
1 ∆x

T (s) = (s, s2)T .

For our population to encode a normal distribution in the sense just described, it is nec-
essary and sufficient for Equation (48) to satisfy the generating function version of the
PPC condition (Equation (38)). Equivalently, this equation puts necessary and sufficient
constraints on the tuning curves f(s) and covariance structure Σ(s). In particular, the
constraints are that

0 =
∂v(s)T

∂s
f(s) (51)

∂f(s)

∂s
= Σ(s)

∂v(s)

∂s
(52)

∂Σ̃(s)

∂s
= diag

(
∂v(s)

∂s

)
Σ̃(s) + Σ̃(s) diag

(
∂v(s)

∂s

)
(53)

where we have defined

v(s) := W TT (s) . (54)
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One possible solution of the above set of equations, which can be verified by tedious but
straightforward algebra, is

fi(s) =
g√

2πa2/∆x



 (1− c) exp

{
−(xi − s)2

2a2/∆x

}
+

c√
1+d
2

exp

{
− (xi − s)2

2 a2

∆x
(1+d)

2

} 
 (55)

Σ̃ij(s) = g
c√

(2πa2/∆x)2d
exp




−

(
xi+xj

2 − s
)2

a2/∆x
− (xi − xj)

2

4a2d/∆x





. (56)

There are two new parameters, c ∈ [0, 1] and d > 0, which do not appear in the independent
Poisson model described in Appendix B. The parameter c could be considered to define the
overall ‘strength’ of correlations. If it is zero, the model reduces to the independent Poisson
model; as it is increased, the off-diagonal elements of the covariance matrix become larger.

The parameter d determines how off-diagonal the structure of the excess covariance
matrix is. This is clear since Σ̃ij(s) is a product of two Gaussians: the first takes its
maximum value where (xi + xj)/2 = s and has variance a2/(2∆x); the second takes its
maximum value where xi = xj and has variance 2a2d/∆x. When d is small, the first
Gaussian dominates, and Σ̃ is ‘hottest’ around the diagonal. When d is large, the second
Gaussian dominates, and Σ̃ instead takes its largest values around the anti-diagonal (see
Figure 2).

These expressions can be used to analytically compute that

⟨ fi(s) ⟩p(s|η) = g





(1− c)√
2π
(
σ2 + a2

∆x

) exp



− (xi − µ)2

2
(
σ2 + a2

∆x

)



 (57)

+
c√

2π
(
σ2 + a2

∆x
(1+d)

2

) exp



− (xi − µ)2

2
(
σ2 + a2

∆x
(1+d)

2

)









[Σnoise(η)]i,j = g
c√

(2π)2
(
σ2 + a2

2∆x

)
2a2d
∆x

exp




−

(
xi+xj

2 − µ
)2

2
(
σ2 + a2

2∆x

) − (xi − xj)
2

4a2d/∆x





(58)

+ δij ⟨ fi(s) ⟩p(s|η) .

They can also be used to numerically compute Σsignal(η), as in Figure 2.
As a final detail, in order for this population to encode a normal distribution with a

specific mean µ and a specific variance σ2, it must be the case that

⟨wT
1 r⟩p(r|η) =

µ

σ2
(59)

⟨wT
2 r⟩p(r|η) = − 1

2σ2
.
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Using Equation (57), this means that

gµ

a2
=

µ

σ2
(60)

− g

2a2
= − 1

2σ2
.

Hence, it is sufficient to choose g such that g = (a/σ)2.
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